[Pub] Lister 2013 Track Settings
 
Global Epigenomic Reconfiguration During Mammalian Brain Development

Maximum display mode:       Reset to defaults   
Select dataType (Help):
partially methylated domain       hypomethylated regions       methylation level ▾       coverage ▾       allele specific methylated regions      
Select subtracks by celltype:
Celltype
Mouse FetalFrontCortex
Mouse FrontCortexNeuronMale7Wk
Mouse FrontCortexNonNeuronFemale6Wk
Mouse FrontCortexMale1Wk
Mouse FrontCortexMale10Wk
Mouse FrontCortexNeuronFemale6Wk
Mouse FrontCortexNonNeuronMale7Wk
Mouse FrontCortexMale6Wk
Mouse FrontCortexMale22Mo
Mouse FrontCortexMale2Wk
Mouse FrontCortexGliaS00bPos
Mouse FrontCortexNonNeuronFemale12Mo
Mouse FrontCortex8WkTet2Mut
Mouse FrontCortexMale4Wk
Mouse FrontCortexNeuronFemale12Mo
List subtracks: only selected/visible    all    ()
  Celltype↓1 dataType↓2   Track Name↓3  
hide
 Mouse FetalFrontCortex  hypomethylated regions  Mouse_FetalFrontCortex_HMR   Data format 
hide
 Configure
 Mouse FetalFrontCortex  methylation level  Mouse_FetalFrontCortex_Meth   Data format 
hide
 Mouse FrontCortexNeuronMale7Wk  hypomethylated regions  Mouse_FrontCortexNeuronMale7Wk_HMR   Data format 
hide
 Configure
 Mouse FrontCortexNeuronMale7Wk  methylation level  Mouse_FrontCortexNeuronMale7Wk_Meth   Data format 
hide
 Mouse FrontCortexNonNeuronFemale6Wk  hypomethylated regions  Mouse_FrontCortexNonNeuronFemale6Wk_HMR   Data format 
hide
 Configure
 Mouse FrontCortexNonNeuronFemale6Wk  methylation level  Mouse_FrontCortexNonNeuronFemale6Wk_Meth   Data format 
hide
 Mouse FrontCortexMale1Wk  hypomethylated regions  Mouse_FrontCortexMale1Wk_HMR   Data format 
hide
 Configure
 Mouse FrontCortexMale1Wk  methylation level  Mouse_FrontCortexMale1Wk_Meth   Data format 
hide
 Mouse FrontCortexMale10Wk  hypomethylated regions  Mouse_FrontCortexMale10Wk_HMR   Data format 
hide
 Configure
 Mouse FrontCortexMale10Wk  methylation level  Mouse_FrontCortexMale10Wk_Meth   Data format 
hide
 Mouse FrontCortexNeuronFemale6Wk  hypomethylated regions  Mouse_FrontCortexNeuronFemale6Wk_HMR   Data format 
hide
 Configure
 Mouse FrontCortexNeuronFemale6Wk  methylation level  Mouse_FrontCortexNeuronFemale6Wk_Meth   Data format 
    
Assembly: Mouse Dec. 2011 (GRCm38/mm10)

Lister_Brain_2013
We are planning to introduce the new version of methylone track hubs sometime between February 7 and February 14 2024. The following assemblies will be updated: mm39, gorGor6, canFam6, GCF_000001735.3, rn7, panTro6, hg38.

Description

Sample BS rate* Methylation Coverage %CpGs #HMR #AMR #PMD
Mouse_FrontCortexMale2Wk 0.988 0.750 0.000 0.937 55549 9981 3925 Download
Mouse_FrontCortexNonNeuronFemale12Mo 0.992 0.783 0.000 0.932 53067 2063 3387 Download
Mouse_FrontCortexGliaS00bPos 0.991 0.733 0.000 0.936 70721 6928 3607 Download
Mouse_FrontCortexMale22Mo 0.982 0.775 0.000 0.936 51370 9316 3718 Download
Mouse_FrontCortexNonNeuronMale7Wk 0.991 0.781 0.000 0.936 45478 6505 3005 Download
Mouse_FrontCortexMale1Wk 0.995 0.769 0.000 0.934 74942 2259 3103 Download
Mouse_FetalFrontCortex 0.995 0.820 0.000 0.929 60101 718 3671 Download
Mouse_FrontCortex8WkTet2Mut 0.984 0.787 0.000 0.936 47525 8526 3678 Download
Mouse_FrontCortexMale4Wk 0.976 0.777 0.000 0.937 52156 13097 3713 Download
Mouse_FrontCortexNeuronFemale12Mo 0.974 0.828 0.000 0.935 77163 5759 4952 Download
Mouse_FrontCortexNonNeuronFemale6Wk 0.992 0.766 0.000 0.917 35825 700 2526 Download
Mouse_FrontCortexNeuronFemale6Wk 0.974 0.821 0.000 0.933 73550 3284 4772 Download
Mouse_FrontCortexNeuronMale7Wk 0.973 0.835 0.000 0.933 78805 4255 5266 Download
Mouse_FrontCortexMale6Wk 0.980 0.784 0.000 0.937 50417 11527 3825 Download
Mouse_FrontCortexMale10Wk 0.982 0.750 0.000 0.936 53726 9863 4469 Download

* see Methods section for how the bisulfite conversion rate is calculated

Terms of use: If you use this resource, please cite us! The Smith Lab at USC has developed and is owner of all analyses and associated browser tracks from the MethBase database (e.g. tracks displayed in the "DNA Methylation" trackhub on the UCSC Genome Browser). Any derivative work or use of the MethBase resource that appears in published literature must cite the most recent publication associated with Methbase (see "References" below). Users who wish to copy the contents of MethBase in bulk into a publicly available resource must additionally have explicit permission from the Smith Lab to do so. We hope the MethBase resource can help you!

Display Conventions and Configuration

The various types of tracks associated with a methylome follow the display conventions below. Green intervals represent partially methylated region; Blue intervals represent hypo-methylated regions; Yellow bars represent methylation levels; Black bars represent depth of coverage; Purple intervals represent allele-specific methylated regions; Purple bars represent allele-specific methylation score; and red intervals represent hyper-methylated regions.

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline MethPipe developed in the Smith lab at USC.

Mapping bisulfite treated reads: Bisulfite treated reads are mapped to the genomes with the rmapbs program (rmapbs-pe for pair-end reads), one of the wildcard based mappers. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. Uniquely mapped reads with mismatches below given threshold are kept. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is clipped. After mapping, we use the program duplicate-remover to randomly select one from multiple reads mapped exactly to the same location.

Estimating methylation levels: After reads are mapped and filtered, the methcounts program is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (containing C's) and the number of unmethylated reads (containing T's) at each cytosine site. The methylation level of that cytosine is estimated with the ratio of methylated to total reads covering that cytosine. For cytosines within the symmetric CpG sequence context, reads from the both strands are used to give a single estimate.

Estimating bisulfite conversion rate: Bisulfite conversion rate is estimated with the bsrate program by computing the fraction of successfully converted reads (read out as Ts) among all reads mapped to presumably unmethylated cytosine sites, for example, spike-in lambda DNA, chroloplast DNA or non-CpG cytosines in mammalian genomes.

Identifying hypo-methylated regions: In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically more interesting. These are called hypo-methylated regions (HMR). To identify the HMRs, we use the hmr which implements a hidden Markov model (HMM) approach taking into account both coverage and methylation level information.

Identifying hyper-methylated regions: Hyper-methylated regions (HyperMR) are of interest in plant methylomes, invertebrate methylomes and other methylomes showing "mosaic methylation" pattern. We identify HyperMRs with the hmr_plant program for those samples showing "mosaic methylation" pattern.

Identifying partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Identifying allele-specific methylated regions: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelicmeth is used to allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the reference by Song et al. For instructions on how to use MethPipe, you may obtain the MethPipe Manual.

Credits

The raw data were produced by Lister R et al. The data analysis were performed by members of the Smith lab.

Contact: Benjamin Decato and Liz Ji

Terms of Use

If you use this resource, please cite us! The Smith Lab at USC has developed and is owner of all analyses and associated browser tracks from the MethBase database (e.g. tracks displayed in the "DNA Methylation" trackhub on the UCSC Genome Browser). Any derivative work or use of the MethBase resource that appears in published literature must cite the most recent publication associated with Methbase (see "References" below). Users who wish to copy the contents of MethBase in bulk into a publicly available resource must additionally have explicit permission from the Smith Lab to do so. We hope the MethBase resource can help you!

References

MethPipe and MethBase

Song Q, Decato B, Hong E, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013) A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLOS ONE 8(12): e81148

Data sources

Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, et al Global epigenomic reconfiguration during mammalian brain development. Science. 2013 341(6146):1237905